Irregular Solutions of an Ill-Posed Problem
نویسندگان
چکیده
Tikhonov regularization is a popular and effective method for the approximate solution of illposed problems, including Fredholm equations of the first kind. The Tikhonov method works well when the solution of the equation is well-behaved, but fails for solutions with irregularities, such as jump discontinuities. In this paper we develop a method that overcomes the limitations of the standard Tikhonov regularization. We present a criterion by which approximate solutions can be evaluated and use it in a search method that is effective in locating points of irregular behavior. Once the points of irregularity have been found, the solution can be recovered with good accuracy.
منابع مشابه
روشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
متن کاملGeneralized Solutions to Semilinear Elliptic Pde with Applications to the Lichnerowicz Equation
In this article we investigate the existence of a solution to a semi-linear, elliptic, partial differential equation with distributional coefficients and data. The problem we consider is a generalization of the Lichnerowicz equation that one encounters in studying the constraint equations in general relativity. Our method for solving this problem consists of solving a net of regularized, semi-l...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملSome ‘complexity’ issues for ill-posed problems
A ‘correct’ interpretation of the computational complexity of an ill-posed problem is formulated as a cost/effectiveness balance for the use of available data to obtain adequate solutions for an application. This composition with an application, is seen as the real problem, leading to the conclusion that some apparently ill-posed problems are, in context, really well-posed with a reasonable ass...
متن کامل